LEED Building Design and Construction
Activity \#2 - Integrative Process (IP)
Before completing this Activity Read: Reference Guide for Building Design and Construction v4 - Pages 36-53

Note the following abbreviations are used in this activity:
NC LEED BD +C: New Construction and Major Renovation
CS LEED BD +C: Core and Shell Development
S LEED BD +C: Schools
R LEED BD +C: Retail
DC LEED BD +C: Data Centers
WDC LEED BD +C: Warehouses and Distribution Centers
HOS LEED BD +C: Hospitality
HC LEED BD +C: Healthcare

Although the LEED BD $+C$ reference guide does not number the LEED prerequisites and credits, for this exercise they have been numbered in the order presented in each credit category.

Integrative Process (IP)
Fill-In, Multiple Choice, Matching

1. Test your knowledge of how well you know the names of the prerequisites and credits for the Integrative Process credit category:

P/C	Name	Applies to:
P1	Integrative Project Planning and Design	$\square N C \square C S \square S \square R \square D C$ $\square W D C \square H O S \square H C$
C1	Integrative Process	$\square N C \square C S \square S \square R \square D C$ $\square W D C \square H O S \square H C$

2. Match the intent to the prerequisite or credit:

Prerequisite/Credit	ANS
$I P-P 1$	B
$I P-C 1$	A

	INTENT
A	To support high-performance, cost-effective project outcomes through an early analysis of the interrelationships among systems.
B	Maximize opportunities for integrated, cost-effective adoption of green design and construction strategies, emphasizing human health as a fundamental evaluative criterion for building design, construction and operational strategies. Utilize innovative approaches and techniques for green design and construction.

3. The Integrative Project Planning and Design prerequisite requires that all Health care projects use a cross-discipline design and decision making, beginning in the programming and pre-design phase.
4. List the process that at a minimum the project team must ensure that they follow:
5. Owner's project Requirements (ope) Document
6. Preliminary Rating Goals
7. Integrated Project Team
8. Design Charrette
9. What must be incorporated into the health mission statement?

> Owner's Project Requirements (OPR) Document
6. What must the health mission statement address?
"Triple bottom line" values - economic, environmental and social.
7. List what the LEED action plan should include, at a minimum:

1. Determines the LEED certification level to pursue
2. Selects the LEED credits to meet the targeted certification level
3. Identifies the responsible parties
4. The integrative project team should include a minimum of four professionals in addition to the owner or owner's representative \qquad -.
5. As early as practical and preferably before Schematic design, conduct a minimum for hour, integrated design Charratte with the project team.
6. What is the goal of the design charrette?

To optimize the integration of green strategies across all aspects of building design, construction and operations drawing on the expertise of all participants.
11. List examples of the information that should be collected before the integrative design charrette:

1. local climate
2. Site conditions
3. waste treatment infrastructure
4. energy load distribution
5. water sources
6. transportation options
7. potential building features
8. List the outcomes from the integrative design charrette:
9. introduce project team to integrative process
10. Share initial background research and analysis
11. Elicit the owner's and Stakeholder's values, aspirations, and requirements
12. Clarify functional and programmatic goals
13. Establish initial principles, benchmarks, metrics, and performance Targets
14. Identity desired LEED certification level and credits to be targeted.
15. Generate potential strategies for achieving performance targets
16. Determine the questions that must be answered to support project decisions
17. Initiate development of the projects health mission statement
18. List the documentation that is required for IP Prerequisite Integrative Project Planning and Design:
19. Narrative explaining how health mission statement addresses credit requirements
20. Action plan from preliminary rating goals
21. What is the referenced standard for the IP Prerequisite Integrative Project Planning and Design?
ANSI consensus National standard Guide 2.0 for Design and construction of sustainable Buildings and Communities
22. List the systems that projects must perform an analyses for the IP Credit Integrative Process:
23. Energy-Related systems
24. Water -Related systems
25. Complete the following:

Abbreviation Name
OPR Owner's Project Requirements
BOD Basis of Design
17. List examples of process water demand volumes:

1. Kitchen
2. Laundry
3. Cooling Tower
4. other equipment
5. List examples of nonpotable water supply volumes:
6. on-site rainwater
7. on-site graywater
8. municipally supplied nonpotable water
9. HVAC equipment condensate
10. In an integrative process the team members collaboration to enhance the efficiency and effectiveness of every system.
11. List the three phases of an integrative process:
12. DIscovery
13. Design and Construction
14. Occupancy, operations, and performance feedback
15. Feedback is critical to determining success in achieving performance targets, informing building operations, and taking corrective action when targets are missed.
16. What EPA tool can projects use to benchmark energy performance for the project's type, scope, occupancy, and location?
Target Finder Tool
17. List the main areas projects can assess for expected water demand:
18. Indoor water demand
19. outdoor water demand
20. Process water demand
21. List aspects that should be included when conducting a preliminary energy model:
22. Site conditions
23. massing and orientation
24. Basic envelope attributes
25. lighting levels
26. Thermal com fort ranges
27. Plug and process load needs
28. Programmatic and operational parameters
29. List the end uses projects should include when performing a "simple box" energy model to identify initial annual energy consumption percentages of total energy use:
30. Space heating
31. Space cooling
32. ventilation
33. Domestic Hot water
34. Lighting
35. Miscellaneous equipment
36. Other, as applicable
37. List the information that is included in the Basis of Design (BOD):
38. System descriptions
39. indoor environmental quality criteria
40. Design assumptions
41. codes, standards, regulations, and guidelines
42. List what the Owner's Project Requirements (OPR) details:
43. Ideas
44. concepts
45. Criteria determined by the owner to be important
46. List design aspects that the project team could consider for analyzing building envelope performance:
47. Solar heat Gain coefficients, u-value of glazing systems
48. R-value (insulation)
49. Building orientation effect on energy loads
50. Effect of percentage of exterior glazing
51. Before \qquad of the building form begins, a building massing ("simple box energy analysis can be used to evaluate potential energy and load reduction strategies, such as insulation levels and window performance ls. levels
52. Small commercial and most residential projects energy use is likely to be dominated by which of these?
A. External loads
B. HVAC Equipment
C. Domestic Hot Water Systems
D. Computers
E. Internal Loads
53. List examples of programmatic and operational parameters:
54. Building size
55. hours of occupancy
56. number ot occupants
57. List examples of what the typical energy consumption by end use for a project depends on:
58. Building type
59. occupancy
60. climate
61. other project-specific conditions
62. What systems are the two largest energy end uses for a hospital?
63. Space heating and cooling
64. MISC Equipment loads
65. List the internal heating and cooling loads that large commercial buildings tend to be dominated by, depending on climatic conditions:
66. occupants
67. equipment
68. ventilation
69. List the benefits that reducing the number of lighting fixtures in a building could have on the energy consumption of the building:
70. cost for electrical energy for lighting in reduced
71. cost for cooling may decrease due to reduction in heat produced by the electric lights.
