LEED Building Design and Construction

Activity #5 – Water Efficiency (WE)

Before completing this Activity Read: Reference Guide for Building Design and Construction v4 – Pages 256-317

Note the following abbreviations are used in this activity:

- NC LEED BD+C: New Construction and Major Renovation
- CS LEED BD+C: Core and Shell Development
- S LEED BD+C: Schools
- R LEED BD+C: Retail
- DC LEED BD+C: Data Centers
- WDC LEED BD+C: Warehouses and Distribution Centers
- HOS LEED BD+C: Hospitality
- HC LEED BD+C: Healthcare

Although the LEED BD+C reference guide does not number the LEED prerequisites and credits, for this exercise they have been numbered in the order presented in the credit category.

Fill-In, Multiple Choice, Matching

1. Test your knowledge of how well you know the names of the credits for the Water Efficiency (WE) credit category:

LEED B	D+C: NC, CS, S, R, DC, WDC, HOS, HC
Credit	Name
P1	
P2	
P3	
C1	
C2	
C3	
C4	

2. Match the intent shown below to the prerequisite or credit:

LEED BD+C: NC, CS, S, R, DC, WDC, HOS, HC

	,, .,,		
Credit	ANS	Credit	ANS
WE-P1		WE – C1	
WE – P2		WE – C2	
WE – P3		WE – C3	
		WE – C4	

	INTENT
А	To conserve water used for cooling tower makeup while controlling microbes, corrosion, and scale in
	the condenser water system.
В	To reduce indoor water consumption.
С	To reduce outdoor water consumption.
D	To support water management and identify opportunities for additional water savings by tracking
	water consumption.

- 3. List the four areas of water use that are addressed by the Water Efficiency (WE) credits:
 - 1.
 - 2.
 - --
 - 3. 4.
- 4. The conservation and creative reuse of water are important because only ______ of Earth's water is fresh water, and of that, slightly over _______ is trapped in glaciers.
- 5. In the U.S., buildings account for ______ of potable water use, the third-largest category, behind thermoelectric power and irrigation.
- Designers and builders can construct green buildings that use significantly less water than conventional construction by incorporating ______ landscapes that eliminate the need for ______, installing water efficient ______, and reusing ______, for nonpotable water needs.

OPTION 1. _____ Irrigation Required Show that the landscape does not require a ______ irrigation system beyond a maximum ______ establishment period.

OR

OPTION 2. ______ Irrigation Reduce the project's landscape water requirement by at least ______ from the calculated baseline for the site's ______ watering month. Reductions must be achieved through plant ______ selection and irrigation system ______, as calculated by the Environmental Protection Agency (EPA)

- 8. Good landscape design and use of ______, ____, and _____tolerant plants can dramatically reduce and even eliminate the need for irrigation while better integrating the building site into its surroundings and attracting native wildlife.
- 9. Native plants also tend to require less ______and fewer chemical ______, which degrade water quality when carried away in ______.
- 10. Projects with _____ landscape area are ______ from this prerequisite.
- 11. For U.S. projects, the WaterSense Water Budget Tool automatically derives ______and ______from the project's ______.
- 12. Use the WaterSense Water Budget Data Finder to estimate the ______rate (ETo) in inches per month for the ______month of the year, based on a project's zip code.
- 13. Hot, dry, and windy locations have _____ ETo values than cool, humid locations.

14. WE Prerequisite Indoor Water use Reduction requirements:

Building Water Use For the fixtures and fittings listed in Table 1, as applicable to the project scope, reduce aggregate water consumption by ______ from the baseline. Base calculations on the volumes and flow rates shown in Table 1.

All newly installed ______, ____, ____, ____, ____lavatory faucets, and ______that are eligible for labeling must be ______ labeled (or a local equivalent for projects outside the U.S.).

Complete Table 1. Baseline water consumption of fixtures and fittings:

Table 1. Baseline water consumption of fixtures and fittings

Fixture or fitting	Baseline (IP units)	Baseline (SI units)		
Toilet (water closet)*		6 lpf		
Urinal*		3.8 l[f		
Public lavatory (restroom) faucet	at 60 psi all others except private applications	1.9 lpm at 415 kPa, all others except private applications		
Private lavatory faucet	at 60 psi	8.3 lpm at 415 kPa		
Kitchen faucet (excluding faucets used exclusively for filling operations)	at 60 psi	8.3 lpm at 415 kPa		
Showerhead*	at 80 psi per shower stall	9.5 lpm at 550 kPa per shower stall		

gpf	=
gpm	=
psi	=

Appliance and Process Water Use

Install ______, ____, and ______within the project scope that meet the requirements listed in the tables below.

Complete Table 2. Standards for appliances

Table 2. Standards for appliances	
Appliance	Requirement
Residential Clothes Washer	or performance equivalent
Commercial Clothes Washer	
Residential Dishwasher (standard and compact)	or performance equivalent
Prerinse spray valve	
Ice machine	or performance equivalent and use either air-cooled or closed-loop cooling, such as chilled or condenser water system

Complete Table 3. Standards for processes

Table 3. Standards for processes	
Process	Requirement
Heat rejection and cooling	Nothrough cooling with potable water for any equipment or appliances that reject heat
Cooling towers and evaporative condensers	 Equip with makeup water conductivity controllers and overflow efficient drift eliminators that reduce drift to maximum of of recirculated water volume for counterflow towers and of recirculated water flow for cross-flow towers

gpm = gallons per minute lpm = liters per minute

Healthcare, Retail, Schools, and Hospitality Only

In addition, water-consuming appliances, equipment, and processes must meet the requirements listed in Tables 4 and 5.

٦

Complete Table 4.	Standards for appliances

Table 4. Standards for appliances			
Kitchen e	equipment	Requirement (IP units)	Requirements (SI units)
	Undercounter	≤ 1.6 gal/rack	≤ 6.0 liters/rack
	Stationary, single tank, door	≤ 1.4 gal/rack	≤ 5.3 liters/rack
	Single tank, conveyor	≤ 1.0 gal/rack	≤ 3.8 liters/rack
	Multiple tank, conveyor	≤ 0.9 gal/rack	≤ 3.4 liters/rack
	Flight machine	≤ 180 gal/hour	≤ 680 liters/hour
	Batch	≤ 6 gal/hour/pan	≤ 23 liters/hour/pan
	Cook-to-order	≤ 10 gal/hour/pan	≤ 38 liters/hour/pan
	Countertop or stand	≤ 3.5 gal/hour/pan	≤ 13 liters/hour/pan
	Roll-in	≤ 3.5 gal/hour/pan	≤ 13 liters/hour/pan

Complete Table 5. Process requirements

Table 5. Process requirements		
Process	Requirement	
	Where local requirements limit discharge temperature of fluids into drainage system, use tempering device that runs water only when equipment discharges hot water OR Provide thermal recovery heat exchanger that cools drained discharge water below code-required maximum discharge temperatures while simultaneously preheating inlet makeup water OR If fluid is steam condensate, return it to boiler	
	Use no device that generates vacuum by means of water flow through device into	
	drain	

The ______ label was developed by the U.S. Environmental Protection Agency to identify these efficient fixtures and ensure that higher efficiency does not come at the cost of performance.

15. Compliance Path 1 Prescriptive Achievement is for projects whose installed fixtures do not ______ maximum levels. Compliance is documented through product ______ or fixture

16. List the fixtures that the WaterSense label can be found for:

- 1.
- 2.
- 3.
- 5.
- 4.

17. List the fixture types that are not labeled by WaterSense:

- 1.
- 2.
- 2
- 3.
- 4.

18. Complete Table 6. Maximum installed flush or flow rate for prescriptive path

Table 6. Maximum installed hush of how fate for prescriptive path				
Fixture or fitting	Maximum installed flush or flow rate (IP)	Maximum installed flush or flow rate (SI)	Threshold below code baseline	
Toilet (water closet)*		4.8 lpf**		
Urinal*		1.9 lpf		
Public lavatory (restroom) faucet		1.5 lpf		
Private lavatory faucets*		5.7 lpf		
Kitchen faucet		6.7 lpf		
Showerhead*		7.6 lpf		

Table 6. Maximum installed flush or flow rate for prescriptive path

* The WaterSense label is available for this fixture type.

**The average flush rate for dual-flush toilets must be calculated as the average flush volume of one full flush and two reduced flushes, using a 1:2 (high flush:low flush) ratio.

gpf = gallons per flush gpm = gallons per minute lpf = liters per flush lpm = liters per minute

- 19. Compliance Path 2 Usage-Based Calculation is for projects that cannot demonstrate the ______ reduction for each fixture, based on manufacturers' documentation. Using the indoor water use ______ provided by USGBC, the project team must perform calculations to show that, in aggregate, the fixtures comply with prerequisite requirements. Projects pursuing points under WE Credit Indoor Water Use Reduction ______ use this compliance path.
- 20. List the information that is required for the indoor water use calculator:
 - 1.
 - 2.
 - 3.
 - 4.
- 21. List the information required to complete the calculation for the design case (installed) flush and flow fixtures:
 - 1.
 - 2.
 - 3.
 - 4.

22. Complete Equation 1. Basic indoor water use reduction calculation

Daily water use for = each fixture type	x	x	x	
---	---	---	---	--

Г

Г

- 23. Appliances and equipment that use water on materials intended for ______ consumption may be ______. For example, bread and produce misters, soda machines, coffee-making machines, and fixtures used to fill sinks for washing produce are ______.
- 24. Lavatory faucets must be classified as ______ or _____. The Uniform Plumbing Code, International Plumbing Code, and the National Standard Plumbing Code each define private as those fixtures in ______, hotel or motel ______ rooms, and ______ rooms in hospitals. All other applications are deemed to be public.
- 25. Complete Table 7. Typical public and private lavatory faucet applications

Table 7. Typical public and private lavatory faucet applications		
Classification		

gpm = gallons per minute lpm = liters per minute

26. Complete Table 8. Nonresidential default fixture uses

Table 8. Nonresidential default fixture uses					
	Duration		Uses p	er day	
Fixture type	(sec)	Employees (FTE)	Visitors	Retail Customers	Students
Water Closet (female)					
Water closet (male)					
Urinal (female)					
Urinal (male)					
Public lavatory faucet					
Shower					
Kitchen sink					

27. Complete Table 9. Residential default fixture uses

Table 9. Residential default fixture uses			
Equipment	Duration (sec)	Uses per day	
Water Closet (female)			
Water closet (male)			
Private lavatory faucet			
Shower			
Kitchen sink			

28. Rating System Variations

Core and Shell

If no eligible plumbing fixtures, appliances, and process water are installed as part of the Core and Shell project scope of work, the project ______ achieves this prerequisite.

Schools

For K–12 schools that close on weekends, holidays, and for eight weeks of school vacation, assume ______ days of operation.

29. Complete Table 10. Default uses in schools, by occupancy type

Table 10. Default uses in s	Table 10. Default uses in schools, by occupancy type		
Fixture type	FTE	Student	Visitor
Water Closet			
Female			
Male			
Urinal			
Female			
Male			
Lavatory faucet			
Shower			
Kitchen sink			

30. WE Prerequisite Building-Level Water Metering requirements:

Building Water Use

Install	water meters that measure the	potable water use for the
building and associated grounds.	Meter data must be compiled into	and annual
summaries; meter	can be manual or automated.	

Commit to ______ with USGBC the resulting whole-project water usage data for a ______-year period beginning on the date the project accepts LEED certification or typical occupancy, whichever comes first. This commitment must carry forward for five years or until the building changes ownership or lessee.

31. List examples of end uses of potable water in a project building and on the grounds:

1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			

If all water comes from a	_ water supply and the utility's water meter provides
consumption data, that system's	meets the prerequisite requirements.

33. WE Credit Outdoor Water Use Reduction requirements: Reduce outdoor water use through one of the following options. Nonvegetated surfaces, such as permeable or impermeable pavement, should be ______ from landscape area calculations. Athletic fields and ______ (if vegetated) and food ______ may be included or excluded at the project team's discretion.

Option 1. No Irrigation Required (2 points except Healthcare, 1 point Healthcare) Show that the landscape does not require a ______ irrigation system beyond a maximum ______-year establishment period.

OR

Option 2. Reduced Irrigation (2 points except Healthcare, 1 point Healthcare) Reduce the project's landscape water requirement (LWR) by at least ______ from the calculated baseline for the site's ______ watering month. Reductions must first be achieved through plant ______ selection and irrigation system ______ as calculated in the Environmental Protection Agency (EPA) WaterSense Water Budget Tool. Additional reductions beyond ______ may be achieved using any combination of efficiency, alternative water sources, and smart scheduling technologies.

34. Complete Table 1. Points for reducing irrigation water

Table 1. Points for reducing irrigation water			
Percentage reduction from baseline	Points (except HC)	Points (HC)	

35. List examples of alternative water sources:

- 1.
- 2.
- 3.
- 4.
- 4.
- 5.

6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		

- 36. Condensate and cooling tower ______ in particular may have ______ levels precluding use for irrigation.
- 37. WE Credit Indoor Water Use Reduction requirements: Further reduce fixture and fitting water use from the calculated ______ in WE Prerequisite Indoor Water Use Reduction. Additional potable water savings can be earned above the prerequisite level using ______ water sources. Include fixtures and fittings necessary to meet the needs of the occupants. Some of these fittings and fixtures may be outside the project boundary. Points are awarded according to Table 1.

38. Complete Table 1. Points for reducing water use

Points (NC, CS, DC, WDC)	Points (S, R, HOS, HC)
	Points (NC, CS, DC, WDC)

AND

39. Appliance and Process Water

Install equipment within the project scope that meets the minimum requirements in Table 2, 3, 4, or 5. ______ point is awarded for meeting all applicable requirements in any ______ table. All applicable equipment listed in each table must meet the standard.

Schools, Retail, and Healthcare projects can earn a ______ point for meeting the requirements of ______ tables. To use Table 2, the project must process at least ______ lbs (57 606 kg) of laundry per year.

40. <u>Complete Table 2. Compliant commercial washing machines</u>

	Table 2. Compliant commercial washing machines
--	--

Washing machine	Requirements (IP)	Requirements (SI)
On-premise, minimum capacity 2,400	Maximum gals per	Maximum liters per
lbs (1088 kg) per 8-hour shift	pound*	0.45 kilograms*

٦

* Based on equal quantities of heavy, medium, and light soil laundry.

41. To use Table 3, the project must serve at least _____ meals per day of operation. All process and appliance equipment listed in the category of kitchen equipment and present on the project must comply with the standards.

42. Complete Table 3. Standards for commercial kitchen equipment

Table 3. Standards	for commercial kitchen equipme	nt	
Kito	chen equipment	Requirement (IP units)	Requirements (SI units)
	Undercounter	ENERGY STAR	ENERGY STAR
			or performance
			equivalent
	Stationary, single tank,	ENERGY STAR	ENERGY STAR
	door		or performance
			equivalent
	Single tank, conveyor	ENERGY STAR	ENERGY STAR
			or performance
			equivalent
	Multiple tank, conveyor	ENERGY STAR	ENERGY STAR
			or performance
			equivalent
	Flight machine	ENERGY STAR	ENERGY STAR
			or performance
			equivalent
	Batch (no drain connection)	≤ 6 gal/hour/pan	≤ 23 liters/hour/pan
	Cook-to-order (with drain connection)	≤ 10 gal/hour/pan	≤ 38 liters/hour/pan
	Countertop or stand	≤ 3.5 gal/hour/pan	≤ 13 liters/hour/pan
	Roll-in	≤ 3.5 gal/hour/pan	≤ 13 liters/hour/pan
	Disposer	3-8 gpm, full load	11–30 lpm, full load
		condition, 10 minute	condition, 10-min
		automatic shutoff; or 1	automatic shutoff; or
		gpm, no-load condition	43.8 lpm, no-load
			condition
	Scrap collector	Maximum 2 gpm	Maximum 7.6 lpm
		makeup water	makeup water
	Pulper	Maximum 2 gpm	Maximum 7.6 lpm
		makeup water	makeup water
	Strainer basket	No additional water	No additional water
		usage	usage

43.	To use Table 4, the project must be a	Or	·	facility.
-----	---------------------------------------	----	---	-----------

44. Complete Table 4. Compliant laboratory and medical equipment

Table 4. Compliant laboratory and medical equipment			
Lab equipment	Requirement (IP)	Requirements (SI)	
Reverse-osmosis water purifier	recovery	recovery	
Steam sterilizer	For 60-inch sterilizer, gal/U.S. tray For 48-inch sterilizer, gal/U.S. tray	For 1520-mm sterilizer, 28.5 liters/DIN tray For 1220-mm sterilizer, 28.35 liters/DIN tray	
Sterile process washer	gal/US tray	1.3 liters/DIN tray	
X-ray processor, 150 mm or more in any dimension	processor water recycling unit		
Digital imager, all sizes			

Table 4. Compliant laboratory and medical equipment

45. To use Table 5, the project must be connected to a municipal or district steam system that does not allow the return of steam condensate.

46. Complete Table 5. Compliant municipal steam systems

Table 5. Compliant municipal steam systems		
Steam system	Standard	
Steam condensate disposal	municipally supplied steam condensate (no return) to drainage system with heat recovery system or reclaimed water	
	OR	
Reclaim and use steam condensate	recovery and reuse	

- 47. WE Credit Indoor Water Use Reduction exemplary performance is earned if the project achieves a ______ water use reduction.
- 48. WE Credit Cooling Tower Water Use requirements: For cooling towers and evaporative condensers, conduct a one-time ______ water analysis, measuring at least the ______ control parameters listed in Table 1.

49. Complete Table 1. Maximum concentrations for parameters in condenser water

Table 1. Maximum concentrations for parameters in condenser water	
Parameter	Maximum level

ppm = parts per million

µS/cm = micro siemens per centimeter

50. Calculate the number of cooling tower ______ by dividing the maximum allowed concentration level of each parameter by the actual concentration level of each parameter found in the potable makeup water. ______ cooling tower cycles to avoid exceeding maximum values for any of these parameters.

51. Complete Table 2. Points for cooling tower cycles

Table 2. Points for cooling tower cycles	
Parameter	Points
Maximum number of cycles achieved without exceeding any	
filtration levels or affecting operation of condenser water system	
(up to maximum of 10 cycles)	
Achieve a minimum 10 cycles by increasing the level of treatment in	
condenser or make-up water	
OR	
Meet the minimum number of cycles to earn 1 point and use a	
minimum 20% recycled nonpotable water	

- 52. Cooling tower or evaporative condenser water efficiency is measured in the ______ of recirculation cycles before water must be removed by ______.
- 53. List examples of good nonpotable water sources:
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.
- 54. WE Credit Water Metering requirements:

Install ______ water meters for _____ or more of the following water subsystems, as applicable to the project:

______. Meter water systems serving at least ______ of the irrigated landscaped area. Calculate the percentage of irrigated landscape area served as the total metered irrigated landscape area

divided by the total irrigated landscape area. Landscape areas fully covered with _	or
vegetation that requires no routine irrigation may be	from the calculation

______. Meter water systems serving at least ______ of the indoor fixtures and fitting described in WE Prerequisite Indoor Water Use Reduction, either directly or by deducting all other measured water use from the measured total water consumption of the building and grounds.

______. Meter water use of at least ______ of the installed domestic hot water heating capacity (including both tanks and on-demand heaters).

Boiler with aggregate projected annual water use of ______ gallons (378 500 liters) or more, or boiler of more than ______ BtuH (150 kW). A single makeup meter may record flows for multiple boilers.

______. Meter reclaimed water, regardless of rate. A reclaimed water system with a makeup water connection must also be metered so that the true reclaimed water component can be determined.

_______ of expected daily water consumption for process end uses, such as humidification systems, dishwashers, clothes washers, pools, and other subsystems using _______ water.

Healthcare Projects only

In addition to the requirements above, install water meters in any ______ of the following: ______ water systems (reverse-osmosis, de-ionized);

backwash water;

water use in ______department;

water use in _____;

water use in _____;

water use in central ______and processing department;

water use in physiotherapy and ______and treatment areas;

water use in ______suite;

_____ hydronic system makeup water; and

_____ makeup for domestic hot water systems.

55.		the major b	building water systems provides a way to for	rmulate
	independent system baselines,		_ usage against those baselines, isolate and i	dentify
	potential sources of	, and take _	actio	on.