Homework #3 Show all work for full credit. 20 pts total

Name: Solution

 Calculate the rate of heat loss due to transmission, infiltration, and ventilation for a 96 ft x 100 ft. single story office building. The ceiling height is 12 feet, and the maximum occupancy is 80 people. The ACH = 6.0. The required ventilation rate per person is 15 CFM. Inside temperature is 72°F and the outside temperature is 45°F. Use 3-decimals for all U-factors. Neglect the heat loss due to the flat roof. Round all calculations for q to whole numbers. Show all calculations for full credit.

Complete the following:

A. Heat Loss Due to Transmission

Specifications		Calculate the U-Factor (3-decimals)	
Walls	R-19 (6" insulation)	0.053	
Ceilings	R-30 (10" insulation)	0.033	
Windows	R-3.13	0.319	
Doors	R-3.70	0.270	

Floor SOG (2 in thick edge insulation, R=5)

Gross Wall Area = 2 x 96 ft x 12 ft + 2 x 100 ft x 12 ft = 2304 ft² + 2400 ft² = 4704 ft² Window Area = 1600 ft² Door Area = 320 ft² Ceiling Area = 9600 ft²

Calculate the Net Wall Area = $\frac{4704 \text{ ft}^2 - 1600 \text{ ft}^2 - 320 \text{ ft}^2 = 2784 \text{ ft}^2}{1600 \text{ ft}^2 - 320 \text{ ft}^2 = 2784 \text{ ft}^2}$

$q_{transmission} = U \times A \times \Delta T$					
Building Element	U-Factor	Area (ft ²)	ΔT (°F)	q (BTUH)	
Walls	0.053	2784	27	3,956	
Windows	0.319	1600	27	13,802	
Doors	0.270	320	27	2,335	
Ceiling	0.033	9600	27	8,554	
Slab = Uf x L	30 x (2 x 96 ft + 2 x 100 ft) = 30 x 392 (Using < 30 okay too)			11,760	
Total Heat Loss Due to Transmission				40,407	

Continued on Back

B. Heat Loss Due to Infiltration

 $q_{infilitration} = C \times ACH \times V \times \Delta T$

= (0.018 Btu/ft³ x °F) x (6.0 ACH) x (96 ft x 100 ft x 12 ft) x (72°F - 45°F)

= 335,923 BTUH

C. Heat Loss Due to Ventilation

 $q_{ventilation}$ = 1.1 x $Q_{airflow}$ x ΔT

Q_{airflow} = 15 CFM/person x 80 persons = 1200 CFM

q_{ventilation} = 1.1 x 1200 CFM x (72°F - 45°F) = 35,640 BTUH

D. Calculate the Total Rate of Heat Loss for the Office Building

q transmission	46,291 BTUH	
qinfililtration	335,923 BTUH	
Qventilation	35,640 BTUH	
q _{total}	417,854 BTUH	