CMGT 235 – Electrical and Mechanical Systems

Department of Construction Management ® California State University, Chico

Exam #2 [100 points]

You may work with one person or individually. Every student SHALL complete their own answer sheet. Include units in all answers.

Name: Solution
Name:

- 1. Complete the following steps for the house plan provided. The owner has approved all options shown including the finished second floor. MDSSPA = 60 psi. The elevation of the highest Fixture above the source of water supply is 45 feet. Meter Pressure loss is 5 psi. The developed length of pipe to the Furthest Fixture is 200 feet. There is a total of six ½" hose bibbs: three on one supply segment and three on another supply segment.
 - A. Calculate the pressure loss due to static head.

Pressure Loss = 45 ft x 0.433 psi/ft = 19.485 psi

B. Calculate the Total Available Pressure under no flow conditions.

Available Pressure = 60 psi - 19.485 psi - 5 psi = 35.515 psi

C. Complete the WSFU table below. [2016 CPC - Table 610.3]. Color and count all plumbing fixtures shown on the plan using a yellow highlighter. Calculate the WSFUs for each fixture using one, two, or three decimals as applicable. Use one or two decimals for WSFU totals.

	.)							
(Section	01)	\	Water Supply Fixture Units					
Fixture	# of	HOT WSFU		COLD WSFU		TOTAL WSFU		
Tixture	Fix.	EACH	THIS JOB	EACH	THIS JOB	EACH	THIS JOB	
WC FT	5			2.5	12.5	2.5	12.5	
LAV	7	0.75	5.25	0.75	5.25	1.0	7.0	
BT/SHW	3	3.0	9.0	3.0	9.0	4.0	12.0	
BT	2	3.0	6.0	3.0	6.0	4.0	8.0	
SHW	2	1.5	3.0	1.5	3.0	2.0	4.0	
KS	3	1.125	3.375	1.125	3.375	1.5	4.5	
BS	1	0.75	0.75	0.75	0.75	1.0	1.0	
DW	2	1.5	3.0		, <u>-1-</u>	1.5	3.0	
CW	1	3.0	3.0	3.0	3.0	4.0	4.0	
LT	1	1.125	1.125	1.125	1.125	1.5	1.5	
НВ	6			2.5	15.0	4.5x2	9.0	
TOTALS			34.5		59.0		64.5	

CPC 2016 Appendix A, Chart A 103.1(2)

D. Demand Load = _____ GPM

CMGT 235 – Electrical and Mechanical Systems

Department of Construction Management & California State University, Chico

Exam #2 [100 points]

You may work with one person or individually. Every student SHALL complete their own answer sheet. Include units in all answers.

Name: Solution
Name:

- 30 pts 1. Complete the following steps for the house plan provided. The owner has approved all options shown including the finished second floor. MDSSPA = 60 psi. The elevation of the highest Fixture above the source of water supply is 45 feet. Meter Pressure loss is 5 psi. The developed length of pipe to the Furthest Fixture is 200 feet. There is a total of six ½" hose bibbs: three on one supply segment and three on another supply segment.
 - A. Calculate the pressure loss due to static head.

Pressure Loss = 45 ft x 0.433 psi/ft = 19.485 psi

B. Calculate the Total Available Pressure under no flow conditions.

Available Pressure = 60 psi - 19.485 psi - 5 psi = 35.515 psi

C. Complete the WSFU table below. [2016 CPC - Table 610.3]. Color and count all plumbing fixtures shown on the plan using a yellow highlighter. Calculate the WSFUs for each fixture using one, two, or three decimals as applicable. Use one or two decimals for WSFU totals.

(ĺ						
Section	02)	Water Supply Fixture Units					
Ti. da una	# of	HOT WSFU		COLD WSFU		TOTAL WSFU	
Fixture	Fix.	EACH	THIS JOB	EACH	THIS JOB	EACH	THIS JOB
WC FT	6			2.5	15.0	2.5	15.0
LAV	8	0.75	6.0	0.75	6.0	1.0	8.0
BT/SHW	4	3.0	12.0	3.0	12.0	4.0	16.0
BT	2	3.0	6.0	3.0	6.0	4.0	8.0
SHW	2	1.5	3.0	1.5	3.0	2.0	4.0
KS	3	1.125	3.375	1.125	3.375	1.5	4.5
BS	1	0.75	0.75	0.75	0.75	1.0	1.0
DW	2	1.5	3.0			1.5	3.0
CW	1	3.0	3.0	3.0	3.0	4.0	4.0
LT	1	1.125	1.125	1.125	1.125	1.5	1.5
НВ	6			2.5	9.0	4.5x2	9.0
TOTALS			38.25		59.25		74.0

CPC 2016 Appendix A, Chart A 103.1(2)

D. Demand Load = _____GPM

E. Use the 2016 CPC Table 610.4 complete the table below for your results: **2016 CPC - Table 610.4**

Pressure Range	30 to 45 psi	
Maximum Allowable Length	200 ft	
Distribution Piping	Pipe Size (inches)	
Meter and Street Service	1"	
Building Supply	2"	
Cold Water Supply	1 ½"	
Hot Water Supply	1 ½"	

F. Allowing for 12 psi at the highest fixture under the maximum demand load of 35 gallons per minute:

Calculate the pressure available for friction loss.

Pressure Available = 35.515 psi – 12 psi = 23.515 psi

Calculate the allowable friction loss per 100 feet of pipe.

Allowable Friction loss = 23.515 psi x 100 / 200 ft = 11.7575 psi

House Plans

Basement

25 pts 2.	Complete the following using the Sanitary Isometric drawing shown on page 7:
	Highlight the plumbing fixture names using a yellow highlighter (i.e., FD-1, SS-1, etc.) and the Clean Out names using an orange highlighter.
	Highlight the Sanitary Drainage piping using a blue highlighter.
	Highlight the Vent piping using a pink highlighter.
	Using the CPC 2016 and a pencil write the DFU (use one decimal) for each plumbing fixture above its name.
	Complete the DFU totals (DFU-1 through DFU-6) using the boxes shown on the drawing.

25 pts 3. Complete the following table and calculate the runoff, Q (gpm) for each area and the total runoff and the total volume (gal) for a one-hour storm for the landscape plan shown. Refer to "How to calculate Drainage" to obtain the coefficient of runoff for each area. **SHOW AREA CALCULATIONS IN SPACE PROVIDED BELOW**

Drainage Area	C	I (in./hr)	Area (ft²)	Q = c x I x A / 96.23 (gpm) (2 decimals)
Concrete	1.00	3.6	1738 ft ²	65.02
Grass Area	0.35	3.6	1000 ft ²	13.09
Loam – Dense Vegetation	0.35	3.6	604 ft ²	7.91
Loam – Light Vegetation	0.45	3.6	162 ft ²	2.73
			Total GPM	88.75
	5325			

Concrete Area =
$$\frac{50 \text{ ft x } 50 \text{ ft} - \frac{1}{2} \text{ x } 18 \text{ ft x } 18 \text{ ft - 20 ft x } 30 \text{ ft = 2500 ft}^2 - 600 \text{ ft}^2 - 162 \text{ ft}^2 = 1738 \text{ ft}^2}{6 \text{ rass Area}}$$

Loam - Dense Area = $\frac{6 \text{ ft x } 50 \text{ ft + 4 ft x } 76 \text{ ft = 604 ft}^2}{6 \text{ tt x } 18 \text{ ft = 162 ft}^2}$

20 pts 4. A commercial building is in an area that has a 2.6 in/hr rainfall rate. The roof drainage system is shown below.

Using the CPC 2016 Chapter 11 Storm Drainage, Tables 1101.8 and 1101.12 determine the following (show all calculations):

A. Required Drain Size

B. Horizontal rainwater pipe size

4"
$$10\,600$$
 / $2.6 = 4077$ ft² (too small)
5" $18\,880$ / $2.6 = 7231$ ft²
Use 5" Horizontal pipe

C. Vertical Leader pipe size

```
4" Leader 18 400/2.6 = 7077 \text{ ft}^2
Use 5" Leader pipe, cannot reduce pipe in direction of flow
```

D. If the owner decided to capture and store the rainwater in three cisterns and the highest month's rainfall rate is 5.0 in/hr, what volume cisterns in gallons would be required? Round answer up to the nearest 1000th.

```
V = A \times I \times C \times 7.5 = 15,750 \text{ ft}^2 \times 5.0 \text{ in/hr} \times 1 \text{ ft} / 12 \text{ in} \times 0.9 \times 7.5 \text{ gal/ft}^3 = 44,296.875 \text{ gal} = 45,000 \text{ gal}
```

Three Cisterns

Volume for Each Cistern = 45,000 / 3 = 15,000 gal